p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.40C24, C42.82C23, C22.84C25, C24.506C23, C22.62- 1+4, C4⋊Q8⋊89C22, D4⋊3Q8⋊19C2, (C4×D4)⋊42C22, (C2×C4).75C24, (C4×Q8)⋊43C22, C4⋊C4.487C23, C22⋊Q8⋊30C22, (C2×D4).468C23, C4.4D4⋊80C22, C22⋊C4.19C23, (C2×Q8).444C23, C42.C2⋊14C22, C42⋊2C2⋊36C22, C42⋊C2⋊39C22, C22.45C24⋊5C2, C22≀C2.28C22, C4⋊D4.241C22, (C23×C4).610C22, (C2×C42).941C22, (C22×C4).357C23, C2.21(C2×2- 1+4), C2.21(C2.C25), C22.35C24⋊9C2, C22.19C24.22C2, (C22×Q8).357C22, C23.33C23⋊20C2, C23.41C23⋊14C2, C22.46C24⋊15C2, C23.36C23⋊28C2, C22.36C24⋊13C2, C22.50C24⋊19C2, C23.38C23⋊21C2, C23.37C23⋊34C2, C23.32C23⋊13C2, C22.D4.30C22, C4⋊C4○(C22⋊Q8), (C2×C4⋊C4)⋊72C22, C4.140(C2×C4○D4), (C2×C22⋊Q8)⋊76C2, C22.29(C2×C4○D4), C2.49(C22×C4○D4), (C2×C42⋊C2)⋊68C2, (C2×C4).492(C4○D4), (C2×C4○D4).226C22, (C2×C22⋊C4).381C22, SmallGroup(128,2227)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.84C25
G = < a,b,c,d,e,f,g | a2=b2=e2=f2=1, c2=g2=a, d2=b, ab=ba, dcd-1=gcg-1=ac=ca, fdf=ad=da, ae=ea, af=fa, ag=ga, ece=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 676 in 511 conjugacy classes, 390 normal (50 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C4⋊Q8, C23×C4, C22×Q8, C2×C4○D4, C2×C42⋊C2, C23.32C23, C23.33C23, C2×C22⋊Q8, C22.19C24, C23.36C23, C23.37C23, C23.38C23, C22.35C24, C22.36C24, C23.41C23, C22.45C24, C22.46C24, D4⋊3Q8, C22.50C24, C22.84C25
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2- 1+4, C25, C22×C4○D4, C2×2- 1+4, C2.C25, C22.84C25
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 29)(10 30)(11 31)(12 32)(13 21)(14 22)(15 23)(16 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 31 27 11)(2 30 28 10)(3 29 25 9)(4 32 26 12)(5 21 20 13)(6 24 17 16)(7 23 18 15)(8 22 19 14)
(2 28)(4 26)(6 17)(8 19)(10 30)(12 32)(14 22)(16 24)
(1 27)(2 28)(3 25)(4 26)(5 18)(6 19)(7 20)(8 17)(9 31)(10 32)(11 29)(12 30)(13 21)(14 22)(15 23)(16 24)
(1 21 3 23)(2 24 4 22)(5 9 7 11)(6 12 8 10)(13 25 15 27)(14 28 16 26)(17 32 19 30)(18 31 20 29)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,31,27,11)(2,30,28,10)(3,29,25,9)(4,32,26,12)(5,21,20,13)(6,24,17,16)(7,23,18,15)(8,22,19,14), (2,28)(4,26)(6,17)(8,19)(10,30)(12,32)(14,22)(16,24), (1,27)(2,28)(3,25)(4,26)(5,18)(6,19)(7,20)(8,17)(9,31)(10,32)(11,29)(12,30)(13,21)(14,22)(15,23)(16,24), (1,21,3,23)(2,24,4,22)(5,9,7,11)(6,12,8,10)(13,25,15,27)(14,28,16,26)(17,32,19,30)(18,31,20,29)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,31,27,11)(2,30,28,10)(3,29,25,9)(4,32,26,12)(5,21,20,13)(6,24,17,16)(7,23,18,15)(8,22,19,14), (2,28)(4,26)(6,17)(8,19)(10,30)(12,32)(14,22)(16,24), (1,27)(2,28)(3,25)(4,26)(5,18)(6,19)(7,20)(8,17)(9,31)(10,32)(11,29)(12,30)(13,21)(14,22)(15,23)(16,24), (1,21,3,23)(2,24,4,22)(5,9,7,11)(6,12,8,10)(13,25,15,27)(14,28,16,26)(17,32,19,30)(18,31,20,29) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,29),(10,30),(11,31),(12,32),(13,21),(14,22),(15,23),(16,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,31,27,11),(2,30,28,10),(3,29,25,9),(4,32,26,12),(5,21,20,13),(6,24,17,16),(7,23,18,15),(8,22,19,14)], [(2,28),(4,26),(6,17),(8,19),(10,30),(12,32),(14,22),(16,24)], [(1,27),(2,28),(3,25),(4,26),(5,18),(6,19),(7,20),(8,17),(9,31),(10,32),(11,29),(12,30),(13,21),(14,22),(15,23),(16,24)], [(1,21,3,23),(2,24,4,22),(5,9,7,11),(6,12,8,10),(13,25,15,27),(14,28,16,26),(17,32,19,30),(18,31,20,29)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 4A | ··· | 4N | 4O | ··· | 4AG |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | 2- 1+4 | C2.C25 |
kernel | C22.84C25 | C2×C42⋊C2 | C23.32C23 | C23.33C23 | C2×C22⋊Q8 | C22.19C24 | C23.36C23 | C23.37C23 | C23.38C23 | C22.35C24 | C22.36C24 | C23.41C23 | C22.45C24 | C22.46C24 | D4⋊3Q8 | C22.50C24 | C2×C4 | C22 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 4 | 8 | 2 | 2 | 8 | 2 | 2 |
Matrix representation of C22.84C25 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 3 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 2 |
0 | 0 | 0 | 0 | 0 | 2 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 3 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 3 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,1,0,0,0,0,0,0,1,0,0],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,3,3,0,0,0,0,0,0,3,0,0,0,0,0,2,2],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,3,0,0,0,0,0,1,0,0,0,0,0,0,4,3,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,3] >;
C22.84C25 in GAP, Magma, Sage, TeX
C_2^2._{84}C_2^5
% in TeX
G:=Group("C2^2.84C2^5");
// GroupNames label
G:=SmallGroup(128,2227);
// by ID
G=gap.SmallGroup(128,2227);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,224,477,456,1430,570,1684,102]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=e^2=f^2=1,c^2=g^2=a,d^2=b,a*b=b*a,d*c*d^-1=g*c*g^-1=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations